談外延結(jié)構(gòu)及外延技術(shù)
關(guān)于外延結(jié)構(gòu)及技術(shù)的詳解:
(1) Droop效應(yīng)
經(jīng)過若干年的發(fā)展,LED的外延層結(jié)構(gòu)和外延技術(shù)已經(jīng)比較成熟,其內(nèi)量子效率最高可達(dá)90%以上。但是,近幾年隨著大功率LED芯片的興起,LED在大注入下的量子效率下降引起了人們的廣泛關(guān)注,該現(xiàn)象被形象地稱為Droop效應(yīng)。對產(chǎn)業(yè)界而言,解決Droop效應(yīng)可以在保證功率的前提下進(jìn)一步縮小芯片尺寸,達(dá)到降低成本的目的。對學(xué)術(shù)界而言,Droop效應(yīng)的起因是吸引科學(xué)家研究的熱點。不同于傳統(tǒng)半導(dǎo)體光電材料,GaN基LED的Droop效應(yīng)起因十分復(fù)雜,相應(yīng)也缺乏有效的解決手段。研究人員經(jīng)過探索,比較傾向的幾個原因分別是:載流子的解局域化、載流子從有源區(qū)的泄漏或溢出、以及俄歇復(fù)合。雖然具體的原因還不明晰,但是實驗發(fā)現(xiàn)采用較寬的量子阱以降低載流子的密度和優(yōu)化p型區(qū)的電子阻擋層都是可以緩解Droop效應(yīng)的手段。
(2) 量子阱有源區(qū)
InGaN/GaN量子阱有源區(qū)是LED外延材料的核心,生長InGaN量子阱的關(guān)鍵是控制量子阱的應(yīng)力,減小極化效應(yīng)的影響。常規(guī)的生長技術(shù)包括:多量子阱前生長低In組分InGaN預(yù)阱釋放應(yīng)力并充當(dāng)載流子蓄水池,升溫生長GaN壘層以提高壘層的晶體質(zhì)量,生長晶格匹配的InGaAlN壘層或生長應(yīng)力互補的InGaN/AlGaN結(jié)構(gòu)等。量子阱的數(shù)量沒有統(tǒng)一的標(biāo)準(zhǔn),業(yè)界使用的量子阱數(shù)從5個到15個都有,最終效果差別不大,阱數(shù)較少的LED在小注入下的效率更高,而阱數(shù)較多的LED在大注入下的效率更高。
(3) p型區(qū)
GaN的p型摻雜是早期困擾LED制作的重要瓶頸之一。這是因為非故意摻雜的GaN是n型,電子濃度在1×1016 cm-3以上,p型GaN的實現(xiàn)比較困難。目前為止最成功的p型摻雜劑是Mg,但是依然面臨高濃度摻雜造成的晶格損傷、受主易被反應(yīng)室中的H元素鈍化等問題。中村修二在日亞公司發(fā)明的氧氣熱退火方法簡單有效,是廣泛使用的受主激活方法,也有廠商直接在MOCVD外延爐內(nèi)用氮氣在位退火激活。日亞公司的p-GaN質(zhì)量是最好的,可能和常壓MOCVD生長工藝相關(guān)。此外,也有一些利用p-AlGaN/GaN超晶格、p-InGaN/GaN超晶格來提高空穴濃度的報道。盡管如此,p-GaN的空穴濃度以及空穴遷移率和n-GaN的電子相比差別依然很大,這造成了LED載流子注入的不對稱。一般須在量子阱靠近p-GaN一側(cè)插入p-AlGaN的電子阻擋層。但AlGaN和量子阱區(qū)之間極性的失配被認(rèn)為是造成載流子泄漏的主要原因,因此近期也有一些廠商嘗試采用p-InGaAlN進(jìn)行替代。
4. 無熒光粉單芯片白光LED
現(xiàn)有白光LED主要采用藍(lán)光LED加黃色熒光粉的方式組合發(fā)出白光,這種白光典型的顯色指數(shù)不高,尤其是對于紅色和綠色的再現(xiàn)能力較弱。此外,熒光粉也面臨諸如可靠性差、損失效率等問題。完全依賴InGaN材料作為發(fā)光區(qū)在單一芯片中實現(xiàn)白光從理論上是可行的。近年來,國內(nèi)外的一些高校和研究機(jī)構(gòu)也都開展了相關(guān)研究。比較有代表性的是中科院物理所陳弘小組利用InGaN量子阱中In的相分離實現(xiàn)了高In組分InGaN黃光量子點,和藍(lán)光量子阱組合發(fā)出白光。但是該白光的顯色指數(shù)還比較低。無熒光粉單芯片白光LED是很具吸引力的發(fā)展方向,如果能實現(xiàn)高效率和高顯色指數(shù),將會改變半導(dǎo)體照明的技術(shù)鏈。
- 上一篇:LED照明需求釋放 三安光電接獲兆馳股份5億元大單 2013/7/26
- 下一篇:鑫業(yè)新光電新產(chǎn)品發(fā)布 2013/6/20